Mesenchymal syndromic polyposis/tumors

Sarah M. Dry, MD
UCLA Department of Pathology and Laboratory Medicine
Los Angeles, CA, USA
Disclosures/Objectives

• No Disclosures

• Objectives
 • Review several different syndromes leading to polyps and other tumors of the GI tract
 • Describe why recognition of these syndromes is important for proper patient management
Case 1

- 28 y.o. female, initial colonoscopy for hematochezia
- Findings: Numerous (dozens) of polyps throughout colon and terminal ileum; multiple polyps biopsied
Diagnosis: Ganglioneuroma
Case, continued

• Other biopsies showed hyperplastic polyps, 1 additional ganglioneuroma and 1 tubular adenoma

• Based on pathology findings, upper endoscopy was performed
 • Numerous polyps: duodenum, stomach
 • Hyperplastic polyps, 1 tubular adenoma (duodenum)

• Case diagnosis: Probable Cowden syndrome (PTEN hamartoma syndrome)
GI ganglioneuromatous proliferations

- Sporadic (solitary) polyps
 - Incidental finding
 - Colon
 - Adults
 - Benign
- Ganglioneuromatous polyposis
- Diffuse ganglioneuromatosis
Ganglioneuromatous polyposis

- Associated with Cowden (adults) and Bannyan-Riley-Ruvalcaba (pediatric)
 - “PTEN hamartoma syndrome”
 - Mixed polyposis syndrome
 - Hyperplastic polyps, hamartomatous polyps
 - Ganglioneuromatous polyps, inflammatory/juvenile polyps, adenomas
 - Polyps (all types) focal or diffuse
 - Upper and lower GI tract affected
PTEN Hamartoma Syndrome

- Mutations in PTEN* gene
- Autosomal dominant or de novo mutation
- 1:200,000
- Other clinical features:
 - Macrocephaly
 - Mucocutaneous benign tumors, including hamartomas
- Increased cancer risk for breast, colorectal (early-onset), endometrial, kidney, melanoma, thyroid
Cancer Risk in PTEN Hamartoma Syndrome

General population
- Breast: 12%
- Thyroid: 1%
- Renal cell: 1.5%
- Endometrial: 2.5%
- Colorectal: 5%
- Melanoma: 2%

Patients with PTEN-HS
- Breast: 85%
- Thyroid: 35%
- Renal cell: 34%
- Endometrial: 28%
- Colorectal: 9%
- Melanoma: 6%

Cowden/PTEN Hamartoma Syndrome

• Consider when
 • no other relevant history AND
 • multiple/mixed polyps present in upper and lower GI tract of young patient OR
 • colonic adenocarcinoma along with multiple polyps in patient under 50

• *Alert clinician to possibility of Cowden/PTEN Hamartoma Syndrome*
Diffuse Ganglioneuromatosis

• Diffuse, not polypoid, involvement of the bowel
• MEN2B most common associated syndrome; NF1 less commonly
 • MEN2B: Medullary thyroid carcinoma, pheochromocytoma, ganglioneuromatosis
• MEN2B: intestines or esophagus
• NF1: Colon=Ileum > rectum > jejunum
• Symptoms:
 • Abdominal pain, constipation, diarrhea common
 • Obstruction and megacolon may occur
 • 75-90% of patients report GI symptoms
• “Benign”, but symptoms may necessitate excision
Diffuse Ganglioneuromatosis – histology

- Schwann cells and ganglion cells
- Infiltrative and diffuse rather than polypoid
- In NF1, affects mucosa and submucosa
- In MEN2B, affects submucosa and muscularis propria, with minimal mucosal involvement
Ganglioneuromatosis – histology (NF1)
Differential diagnosis on biopsy** for ganglioneuroma and ganglioneuromatosis

- Mucosal schwann cell hamartoma
- Mucosal perineurioma
- Schwannoma
- Neurofibroma

**Only if ganglion cells absent on biopsy
Mucosal Schwann Cell Hamartoma

- No associated syndromes
- Incidental
- Pan-colonic, especially rectosigmoid
- Polyp (0.1 – 0.6 cm)
- Involves mucosa
- Spindled schwann cells
- S100 positive
- No ganglion cells
Mucosal Schwann Cell Hamartoma
Mucosal Perineurioma

- No associated syndromes
- Virtually all colon/rectum
- Aka “benign fibroblastic polyp”
- Mucosa +/- submucosa
- Crypts entrapped, distorted, hyperplastic/serrated
- **Synchronous/metachronous polyps (TAs, HPs, SSAs)**
S100 Negative

EMA weak patchy positive

GLUT-1/Claudin 1 positive
Schwannoma

• Stomach
• Mural centered mass
• Do not have characteristic features of soft tissue schwannomas
 • More evenly cellular
 • Verocay bodies/hyalinized vessels absent or rare
• *Peripheral, peri-tumoral chronic inflammatory infiltrate*
• S100+
• Benign
Schwannoma
Neurofibroma

• Sporadic OR in setting of NF1
• **Rare in GI tract
• Bland spindled cells with variation in cell size
• Collagenous matrix
• Mitoses absent to extremely rare
• Subpopulation of cells S100/SOX-10+
• Subpopulation of cells CD34+
Neurofibroma
GI ganglioneuromatous proliferations

- Sporadic (solitary) polyps
- Ganglioneuromatous polyposis – Cowden’s
 - Mixed polyposis
 - Increased cancer risk
- Diffuse ganglioneuromatosis – MEN2b, NF1
 - Benign but symptomatic: pseudoobstruction, megacolon
Case 2: 54 y.o. female, no PMHx
Presents with abdominal pain
3.7 cm duodenal mass, undergoes Whipple procedure
Somatostatin
Additional gross findings
Summary of findings

• Somatostatinoma (3.7 cm)
• Multiple GISTs, only very rare mitoses
• Coincidence, or syndromic?
Neurofibromatosis Type 1 (NF1)

- Autosomal dominant
- Incidence 1:3000 births
- NF-1: one of the highest new mutation rates
- 50% of patients have no family history
- No standard molecular test
 - Gene too large and no hot spots
NF1

• Variable expression
 • “segmental” form limited to dermatome

• Some experts believe GI tract involvement is a type of segmental NF1 presentation

• NF manifestations may be limited to GI tract or external features few/mild
NIH Consensus Criteria for NF-1: 2 or more features required

- 6+ Café au lait spots
- 2+ cutaneous/subcutaneous neurofibromas OR a plexiform neurofibroma
- Axillary or inguinal freckling
- Optic nerve glioma
- 2+ Lisch nodule (iris hamartomas)
- 1 first degree relative with NF-1
- Bony dysplasia (sphenoid wing dysplasia, bowing of long bone +/- tibial pseudoarthrosis
- **No GI criteria**
Neurofibromatosis Type 1 – GI features

• Uncommon (5-25% of NF1 patients), middle/older aged patients
• Clinically unrecognized?
 • Only 5% symptomatic
• Hyperplasia/hypertrophy of ganglion cells and neural processes
 • Distinct nodules or diffuse proliferation within myenteric plexus
• Multiple synchronous or metachronous tumors
 • **Multiple GISTs, typically small bowel
 • GI Neurofibromas
 • Often plexiform
 • Often full-thickness bowel involvement
 • Upper GI (small bowel, esophagus, stomach) more common
 • Diffuse ganglioneuromatosis
 • GI endocrine tumors (especially ampullary/periampullary tumors; somatostatinomas)
Plexiform neurofibroma
GISTs in NF1:
- Multiple, small (<2 cm)
- Small bowel
- Spindled (80-90%)
- ICC hyperplasia (30-40%)
- Skeinoid fibers characteristic
- Typically low to no mitoses
- Malignant GISTs (up to 20%)
- c-kit/DOG-1 IHC +
- *S100 diffusely/patchy +
- 10% mutations in KIT, PDGFRA
- Lack SDH mutations
- Poor response to imatinib
Summary: NF1 – mesenchymal GI tumors

- Multiple small bowel GISTs (skeinoid fibers) most common tumor
- Ampullary/periampullary NETs, especially somatostatinomas
 - NETs at other GI sites less common
- Increased risk of malignant endocrine tumors
- GI presentations highly suspicious for NF1 are:
 - NET (especially ampullary/periampullary) + GIST
 - Neurofibroma + GIST
 - Ganglioneuroma + GIST
 - Plexiform neurofibroma of GI tract
 - Diffuse ganglioneuromatosis affecting the mucosa and submucosa
Case 3

- 22 y.o male presents for excision of 4.5 cm gastric tumor; imaging shows multiple gastric masses as well as enlarged peri-gastric lymph nodes and liver masses
- No personal medical history
- Patient’s father recently diagnosed with paraganglioma and there is a family history of “cancer”
All masses similar histology/IHC

IHC: c-kit, DOG-1 +

Lymph nodes, peritoneum, liver involved

Mitoses >20/50 HPFs in several masses
Summary

- Multifocal epithelioid gastric GIST (c-kit, DOG-1 +)
- Metastases at presentation
- Young patient
- Is this anything other than a sporadic GIST?
- Is there any other information or ancillary testing you might want?
Case: SDH-deficient GIST- Carney-Stratakis Dyad

- Multiple SDH deficient GISTs
- Father with paraganglioma
- Patient and father tested and both showed germline SDH mutation
Inherited GIST syndromes

• **SDH intact**
 • Germline KIT mutations
 • Germline PDGFRA mutations
 • Neurofibromatosis Type 1 (NF1 gene mutations)

• **SDH loss**
 • Carney-Stratakis Dyad
 • Germline Succinate Dehydrogenase (SDH) subunit B, C or D mutations
 • GIST + paraganglioma
 • 20% of SDH negative GISTs
 • SDHA germline mutations
 • 30% of SDH negative GISTs

• 50% of GISTs with loss of SDH seen in Carney Triad (not inherited*, syndromic, SDHC promoter hypermethylation*; GIST, paraganglioma, pulmonary chondroma)
Succinate Dehydrogenase

- SDH: complex of proteins of the inner mitochondrial membrane, SDHA/B/C/D
 - Important for cellular respiration
- Germline SDH mutations in paragangliomas/pheochromocytomas, renal cell carcinoma, thyroid tumors, GISTs and pituitary adenomas
- Bi-allelic loss or promoter hypermethylation leads to destabilization of SDH complex and loss of SDHB by IHC.
- No matter which subunit (A/B/C/D) affected, SDHB IHC will be lost
 - SDHA loss (in addition to SDHB loss) identifies SDHA germline mutations
 - IHC for SDHC and SDHD not reliable currently
Accurate SDH IHC interpretation essential

- Loss of SDHB by IHC = germline SDH mutation or Carney Triad (SDHC promoter hypermethylation)

- Positive staining: granular, cytoplasmic (mitochondrial)

- Need internal positive control (endothelium, inflammatory cells)
SDH-deficient GISTs: Clinical features

• Gastric
• Female predominance
• Younger age
• Multifocal or metachronous dx
• LN, liver, peritoneal metastases common
• Prolonged survival
 • Survival not predicted by NCCN criteria (size, mitotic rate, location)
• Primary resistance to imatinib (Gleevec)
• Epithelioid or mixed epithelioid/spindled >>> pure spindled
Carney-Stratakis Dyad/CSS

• **Dyad** of GISTs and paragangliomas, first described 2002
• Average age of presentation: early 20s
• Males and females equally affected
• **Germline loss of function mutations of SDHB/C/D**
 • AD inheritance with incomplete penetrance
 • Variable phenotypic expression
 • Monozygotic twins, 1 w/GIST, other w/PG at same age
Carney Triad

- **Triad** SDH deficient GIST, Paragangliomas, pulmonary chondromas
 - Pheochromocytomas, adrenocortical adenomas (usually nonfunctional) also seen
 - Minority (~25%) of patients have all three tumors
- Average age at presentation: teenage years
- Marked female dominance
- **SDHC promoter hypermethylation** – not inherited
 - accounts for 50% of all SDH deficient GIST
 - *Recent report of rare SDHx mutations in Carney Triad*
SDH intact familial GIST syndromes
Familial gastrointestinal stromal tumours with germline mutation of the KIT gene

Nishida T et al., Osaka University Medical School

Multiple benign GISTs: 5, 10

Multiple GISTs, benign and malignant: 9

Intestinal obstruction: 1, 2, 3

Confirmed CKIT Exon 11 mutation: 5, 9, 10, 15
KIT germline mutations

- More than 30 families described to date; mutations exons 8, 9, 11, 13, and 17
- Autosomal dominant
- GISTs are spindle cell, arise throughout GI tract
- Diffuse ICC hyperplasia
- Response to imatinib
KIT germline – non GIST clinical features

Exons 11, 17: dysphagia
Exon 11: hyperpigmentation (perineal, circumoral, hands, knees) and urticaria pigmentosa
Non-tumor manifestations difficult to confirm

Hyperpigmentation
or dysphagia

Fig. 1 Pedigree of family transmitting germ-line KIT mutation. Squares, male; circles, female; /, deceased. □ ○, unaffected; □ ●, hyperpigmentation; □ ○, dysphagia; □ ○, GIST; □ ●, hyperpigmentation plus dysphagia; □ ●, GIST plus hyperpigmentation; □ ●, GIST plus dysphagia; □ ●, GIST plus hyperpigmentation plus dysphagia; +, Test W557R (+); −, Test W557R (−).
PDGFRA germline mutations

• 5 families described to date
• 5 separate germline mutations described in exons 12, 14 and 18
• Appears to be autosomal dominant with incomplete penetrance
• Clinical characteristics
 • Gastric GIST (single and multiple GISTs described) (4 reports)
 • Multiple small intestine or gastric “fibrous” tumors (4 reports)
 • Large hands (3 reports)
 • Multiple small intestine lipomas (2 reports)
 • Course facies (2 reports)
 • Premature loss of teeth requiring dentures (1 report)
• Clinical complications from fibrous polyps (intussusceptions)
• GISTs often epithelioid and predominantly gastric
• Lack diffuse ICC hyperplasia
23 y.o female, PDGFRA somatic mutant
Summary: Inherited/syndromic GISTs

• SDH intact (KIT, PDGFRA or NF1 mutations)
 • KIT/NF-1: pure spindled most common; PDGFRA epithelioid
 • KIT: through GI tract; PDGFRA: gastric; NF1: small bowel
 • KIT/NF1: background ICC hyperplasia
 • All: additional clinical features

• SDH loss (SDHx mutations or SDHC promoter hypermethylation)
 • Gastric multifocal tumors; epithelioid (pure or mixed) most common
 • Metastatic disease common; prolonged survival

• SDH intact vs. SDH-loss distinction clinically helpful
 • Rapid, inexpensive segregation to identify next management steps
 • SDH loss - genetic counselor to help distinguish inherited vs. non-inherited
 • SDH loss and NF1 with primary resistance to imatinib
Thank you!